

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO AMAZONAS

CAMPUS MANAUS DISTRITO INDUSTRIAL

Curso: ENGENHARIA DE CONTROLE E AUTOMAÇÃO

OBJETIVOS

Capacitar o aluno a usar os conceitos e técnicas numéricas na resolução de problemas

DISCIPLINA:	PERÍODO	C.H. Semanal:	C.H. Total:
Métodos Numéricos	4 º	4h	80h
PRÉ-REQUISITO (S):		C. H. Teórica: 80h	
Cálculo Diferencial de Várias Variáveis			
		C. H. Prática:	

CONTEUDO PROGRAMÁTICO

- 1. Conceitos iniciais sobre erros
 - 1.1 Representação do números: conversão do sistema decimal para binário;
 - 1.2 Aritmética do ponto flutuante;
 - 1.3 Erros absolutos e relativos:
 - 1.4 Erros de arredondamento e truncamento em um sistema aritmético de ponto flutuante;
 - 1.5 Análise de erros nas operações aritméticas de ponto flutuante.
- 2. Zeros reais de funções reais
 - 2.1 Isolamento das raízes;
 - 2.2 Critério de parada;
- 2.3 Métodos iterativos para se obter zeros reais de funções: bissecção, posição falsa, ponto fixo, Newton-Raphson e secante;
 - 2.4 Comparação entre os métodos;
 - 2.5 Localização das raízes;
 - 2.6 Determinação das raízes reais;
 - 2.7 Método de Newton para zeros de polinômios.
- 3. Resolução de sistemas lineares
 - 3.1 Método da eliminação de Gauss;
 - 3.2 Fatoração LU;
 - 3.3 Fatoração de Cholesky;
 - 3.4 Testes de parada;
 - 3.5 Método iterativo de Gauss-Jacobi;
 - 3.6 Método iterativo de Gauss-Seidel;
 - 3.7 Comparação entre os métodos.
- 4. Introdução à resolução de sistemas não-lineares
 - 4.1 Método de Newton;
 - 4.2 Método de Newton Modificado;
 - 4.3 Método de Quase-Newton.
- 5. Interpolação
 - 5.1 Interpolação polinomial;
 - 5.2 Resolução do sistema linear;
 - 5.3 Forma de Lagrange;
 - 5.4 Forma de Newton;

- 5.5 Erro na interpolação;
- 5.6 Interpolação inversa;
- 5.7 Grau do polinômio interpolar: escolha e fenômeno de Runge;
- 5.8 Função Spline de interpolação: linear e cúbica interpolante.
- 6. Ajuste de curvas pelo método dos mínimos quadrados
 - 6.1 Caso discreto:
 - 6.2 Caso contínuo:
 - 6.3 Caso não-linear: testes de alinhamento.
- 7. Integração numérica
 - 7.1 Fórmulas de Newton-Cotes: regras dos trapézio e 1/3 de Simpson;
 - 7.2 Teorema geral do erro;
 - 7.3 Quadratura Gaussina.
- 8. Soluções numéricas de equações diferenciais ordinárias
 - 8.1 Problemas de valor inicial:
 - 8.2 Métodos de passo simples:
 - 8.3 Métodos de passo múltiplos;
 - 8.4 Métodos de previsão-correção;
 - 8.5 Equações de ordem superior;
 - 8.6 Problemas de valor de contorno: método das diferenças finitas.

BIBLIOGRAFIA BÁSICA

- 1. CHAPRA, S. C., **Métodos Numéricos Aplicados com MATLAB para Engenheiros e Cientistas**, Grupo A, 2013.
- 2. GILAT, A., SUBRAMANIAM, V., Métodos Numéricos para Engenheiros e Cientistas: Uma introdução com Aplicações Usando o MATLAB. Bookman.
- 3. CUNHA, M. C., Métodos Numéricos. Editora da UNICAMP, 2000.

BIBLIOGRAFIA COMPLEMENTAR

- 1. CHAPRA, S. C., CANALE, R. P., Métodos Numéricos para Engenharia, Grupo A, 2008.
- 2. NAKAMURA, S., Métodos Numéricos Aplicados com Software. Prentice-Hall, 2012.
- 3. PALM, W. J., Introdução ao MATLAB para Engenheiros. Grupo A, 2013.