

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO AMAZONAS PRÓ-REITORIA DE ENSINO DIRETORIA DE ENSINO DE GRADUAÇÃO

EMENTÁRIO					
CURSO					
Engenharia de Computação					
PERÍODO		DISCIPLINA		CÓDIGO	
6°		Sistema de Controle em Tempo Contínuo		ECP64	
CARGA HORÁRIA				PRÉ-REQUISIT	0
TEÓRICA 60h	PRÁTICA 20h		EXTENSÃO 00	ECP31	
EMENTA					

Introdução aos sistemas de controle em tempo contínuo. Modelagem de sistemas dinâmicos utilizando função de transferência e espaço de estados. Análise da resposta transitória e de regime permanente em sistemas lineares. Estudo de critérios de estabilidade, incluindo o critério de Routh-Hurwitz. Resposta em frequência e análise pelo método do lugar das raízes. Projeto e análise de controladores PID, métodos de sintonia e desempenho desejado. Projeto de controladores por realimentação de estados e observadores. Aplicações práticas em sistemas de controle, com estudo de casos e simulações.

OBJETIVO GERAL

Proporcionar aos discentes uma compreensão sólida dos fundamentos dos sistemas de controle em tempo contínuo, capacitando-os a modelar, analisar e projetar sistemas de controle lineares, com foco em métodos clássicos e modernos para o desenvolvimento de controladores e observadores.

CURRICULARIZAÇÃO DA EXTENSÃO

Esta disciplina não contempla curricularização da extensão.

BIBLIOGRAFIA BÁSICA

- OGATA, Katsuhiko. *Engenharia de Controle Moderno*. 5. ed. São Paulo: Pearson Prentice Hall, 2010.
- NISE, Norman S. Engenharia de Sistemas de Controle. 8. ed. Rio de Janeiro: LTC, 2023.
- DORF, Richard C.; BISHOP, Robert H. **Sistemas de Controle Modernos**. 13. ed. Rio de Janeiro: LTC, 2020.

BIBLIOGRAFIA COMPLEMENTAR

- GOLNARAGHI, Farid; KUO, Benjamin C. Sistemas de Controle Automático. 9. ed. Rio de Janeiro: LTC, 2012.
- CASTRUCCI, Plínio de Lauro; BITTAR, Anselmo; SALES, Roberto Moura. *Controle Automático*. Rio de Janeiro: LTC, 2018.
- FRANKLIN, Gene F.; POWELL, J. David; EMAMI-NAEINI, Abbas. **Sistemas de Controle para Engenharia.** 6. ed. Porto Alegre: Bookman, 2013.
- AQUINO, Carlos Vinícius Lessa. Fundamentos de Controle Automático. Rio de Janeiro: LTC, 2012.
- MOREIRA, Cláudio L. de Mello; MENEZES, Airton. Modelagem, Análise e Controle de Sistemas Dinâmicos. Belo Horizonte: Editora UFMG, 2014.